شکلهای مسطح را هم نهشت گویند اگر همریخت و هم اندازه باشند. شکلهای همنهشت را میتوان با تبدیلی که نقاط را حرکت میدهد ، اما رابطه های برخوردی "incidence" (بین نقاط و خطوط)، زوایای بین خطوط، و طولهای پاره خطها را تغییر نمی دهد، بر هم منطبق کرد.
چنین تبدیلی سطحها را حفظ میکند و خطوط موازی را موازی جابجا میکند.
اگر شکلهای همنهشت دارای جهت یکسان ( نسبت به جهت ثابتی از صفحه) باشند، آنها را میتوان با استفاده از دنباله ای از انتقالها و دوران های صفحه به هم تبدیل کرد.
چنین شکلهایی را مستقیم-هم نهشت " directly congruent" می نامند.
اگر دارای جهت یکسان نباشند آنگاه برای منطبق کردن یکی بر دیگری، میتوان دنباله ای را بدست آورد که غیر از انتقالها و دوران های متوالی حاوی تقارنی منفرد نسبت به خطی راست باشد.
شکلهایی چنین را وارون - همنهشت "inversely congruent" می نامند.
انتقالها ، دورانها و تقارنها به تبدیل های هم نهشتی موسوم اند و می توانند در بررسی شکلهای مسطح به عنوان معیارهای همنهشتی به کار روند، اما این کاربرد به هیچ وجه در برگیرنده سودمندی آنها به عنوان وسیله ای در کشف مطالب تازه هندسی نیست.
چهار قضیه در مورد همنهشتی مثلثها
در تعریف همنهشتی نیاز است که شکلها در جمیع جنبه ها سازگار باشند، بخصوص طولهای اضلاع متناظر و زوایای بین انها برابر باشند.
قضایای زیر بیان میکند که در مورد حالات خاصی از مثلثها کافی است که برای امتحان هم نهشتی سه جز آنها را مورد بررسی قرار دهیم. اگر این سه جز در دو مثلث برابر باشند مثلثها همنهشت هستند.
چهار قضیه همنهشتی
1. دو مثلث هم نهشت اند اگر طول یک ضلع یکی از انها برابر طول ضلع نظیرش از دیگری و دو زاویه آنها برابر دو زاویه نظیرشان از دیگری باشد
2.دو مثلث هم نهشت اند اگر طولهای دو ضلع یکی برابر طولهای ضلعهای نظیرشان از دیگری و زاویه های بین این ضلعها برابر باشند
3.دو مثلث هم نهشت اند اگر طولهای دو ضلع یکی برابر طولهای ضلعهای نظیرشان از دیگری و زاویه های مقابل ضلع های بزرگتر آنها برابر باشند
4. دو مثلث هم نهشت اند اگر طولهای سه ضلع از یکی برابر طولهای ضلعهای نظیرشان از دیگری باشند.
اشکال چهار قضیه