منو
 صفحه های تصادفی
فیزیولوژی ورزشی
ایمن ترین راهکار برای اختلالات بینایی
اثر بهنجار زیمن
جلگه های آمریکایی جنوبی
رشته علوم اقتصادی اقتصاد کشاورزی
بوی سیب از ضریح منور
ارتباط با برزخ
اطلاعات دارویی
اگزالبومینه
اعلام حمایت اصحاب از امام حسین علیه السلام
 کاربر Online
490 کاربر online

زیرگروه خارج‌قسمتی

تازه کردن چاپ
علوم ریاضی > ریاضی > شاخه های ریاضی > ریاضی محض
(cached)



زیرگروه خارج قسمتی :

فرض کنید یک گروه و .مجموعه همدسته های در را با نماد نمایش می دهیم و :

قانون ترکیب را در مجموعه چنین تعریف می کنیم :

به گروه خارج قسمتی به معروف است.

تذکر:

اگر گروه جمعی باشد ، آنگاه :

و قانون ترکیب را به صورت زیر تعریف میکنیم:


قضیه‌ها

قضیه 1.

اگر ، آنگاه یک گروه است . در صورتیکه گروه متناهی باشد ، آنگاه مرتبه برابر است با

اثبات:

ابتدا نشان می‌دهیم که گروه است :
بسته است . چرا که اگر آنگاه :

این مجموعه شرکت پذیر نیز می باشد .زیرا:


با توجه به اینکه یک گروه است ، بنابراین :

اکنون به بررسی خاصیت عنصر خنثی می پردازیم :

حال خاصیت عنصر وارون هر عضو را بررسی میکنیم :

بنابراین:


همچنین ببینید


پیوندهای خارجی

http://en.wikipedia.org/wiki/Quotient_group
http://mathworld.wolfram.com/QuotientGroup.html


تعداد بازدید ها: 9673


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..