گروه مشتق





جابجاگر

اگر ، آنگاه عنصر را جابجاگر می‌نامند و نشان می‌دهیم :


  • اگر گروه جابجایی باشد ،آنگاه و برعکس.
  • در حالت کلی مجموعه تمام جابجاگرها یک گروه را تشکیل نمی دهند ، به عبارت دیگر حاصل‌ضرب دو جابجا‌گر ، لزومی ندارد که یک جابجاگر باشد .
  • برای هر داریم:


گروه مشتق ( گروه جابجاگر‌ها )

اگر یک گروه باشد ، مجموعه را به صورت زیر تعریف می کنیم :

که معرف حاصل‌ضرب تعداد متناهی جابجاگر است . را گروه مشتق یا جابجاگر های می نامند.

قضیه‌ها

قضیه 1.

اگر یک گروه باشد ،آنگاه

اثبات :

می‌دانیم .زیرا و همچنین .
حال فرض می کنیم دلخواه باشند . ثابت کنیم :

بنابراین:

لذا . حال ثابت می کنیم :


قضیه 2.

اگر و همچنین باشد ،آنگاه جابجایی است اگر و فقط اگر

اثبات:

فرض کنیم عناصر دلخواه باشند.
می‌دانیم عنصر خنثی زیرگروه خارج‌قسمتی است.
جابجاگر دلخواه را از گروه در نظر می‌گیریم . آنگاه جابجایی است ، اگر و تنها اگر:


همچنین ببینید


پیوندهای خارجی

mathworld.wolfram.com/CommutatorSubgroup.html


تعداد بازدید ها: 12330