منو
 صفحه های تصادفی
آزمایش رشد بدون خاک گیاهان
خرد کن‌ها
امام صادق علیه السلام و زنده کردن مردگان
دوران بارداری حضرت زهرا علیهاسلام
تومورهای پوست
ابو عبدالله محمد
تیره گزیریداسه
رابطه سیگار و بیماریها
دانشنامه:راهنمای کاربر
پروتستانها و کاتولیکها
 کاربر Online
986 کاربر online

معادله درجه سوم

تازه کردن چاپ
علوم ریاضی > ریاضی > شاخه های ریاضی > ریاضیات پایه > معادلات
علوم ریاضی > ریاضی > حساب و جبر > جبر خطی
علوم ریاضی > ریاضی > حساب دیفرانسیل و انتگرال
(cached)



در ریاضیات، معادله درجه 3 یک چند جمله‌ای است که بیشترین درجه مجهول آن 3 باشد. به عنوان مثال معادله یک معادله درجه 3 می‌باشد، فرم کلی معادلات درجه سوم به صورت نوشته می‌شود. که بطور معمول ضرایب معادله‌ای را حقیقی هستند. همچنین، همواره منفی بر اینست که در چنین معادله‌ای باشد. حل معادله‌ درجه سوم متوجه پیدا کردن ریشه‌های معادله می‌باشد.

تاریخچه

معادلات درجه سوم برای اولین بار توسط ریاضیدانان هندسی در حدود 400 سال قبل از میلاد مورد توجه قرار گرفت. در بین ریاضیدانان پارسی، عمر خیام (1123-1048) راه حلی را برای حل معادله درجه سوم ابداع کرد. او در این روش با استفاده از هندسه نشان داد که چگونه با استفاده از روش هندسی می‌توان به جواب عددی معادله رسید با استفاده از جدول مثلثاتی. همچنین در حول و حوش قرن 16، یک ریاضیدان ایتالیایی به نام scipione، روشی را برای حل کلاسی از معادلات درجه سوم که به صورت می‌باشند را ادامه داد. او همچنین نشان داد که تمامی معادلات درجه سوم را می‌توان به صورت گفته شده کاهش داد.

ریشه‌های معادله

هر معادله درجه سوم حقیقی حداقل یک جواب حقیقی دارد. این استدلال نتیجه مستقیم قضیه مقدار میانگین است.
برای معادله درجه سوم یک معادله مشخصه‌ای به صورت زیر بیان می‌شود که امکان وجود ریشه‌ها را بیان می‌کند. بنابراین با فرض



موارد زیر نتجه می‌شود:

  1. : آنگاه معادله حتما 3 ریشه مجزا خواهد داشت.
  2. : آنگاه معادله حتما یک ریشه حقیقی و. یک جفت ریشه مختلط خواهد داشت.
  3. : آنگاه معادله حداقل دو ریشه دارد.

برای تصمیم گیری در مورد اینکه معادله چند ریشه متمایز دارد را به صورت زیر تشکیل می‌دهیم:


حال دو حالت در نظر می‌گیریم:
اگر ، آنگاه هر 3 ریشه تکراری است.
در غیر اینصورت معادله 2 ریشه تکراری و یک ریشه مجزا خواهد داشت.

روش کاردانو برای پیدا کردن ریشه‌های معادله درجه سوم

در ابتدا معادله داده شده را به فرم کلاسیک تبدیل می‌کنیم، همین معادله داده شده را به ضریب تقسیم می‌کنیم.
حال با تغییر متغیر: معادله را به فرم زیر تبدیل می‌کنیم.

بطوری که و معادله به دست آمده را معادله تقلیل یافته می‌نامیم.
حال فرض می‌کنیم که بتوانیم اعداد u و v را طوری پیدا کنیم که:

حل جواب معادله داده شده با فرض t=v-u به دست می‌آید این مطلب بطور مستقیم با تعقیب متغیر t در (2) قابل بررسی می‌باشد. به عنوان یک نتیجه از اتحاد معادله درجه سوم معادله

(3) قابل حل است. با حل معادله درجه دوم برای v که به دست می‌آید

با قرار دادن این مقادیر در 3 خواهیم داشت

که از حل این معادله که یک معادله درجه 2 از می‌باشد خواهیم داشت
حال چون و پس

مباحث مرتبط با عنوان


تعداد بازدید ها: 109987


ارسال توضیح جدید
الزامی
big grin confused جالب cry eek evil فریاد اخم خبر lol عصبانی mr green خنثی سوال razz redface rolleyes غمگین smile surprised twisted چشمک arrow



از پیوند [http://www.foo.com] یا [http://www.foo.com|شرح] برای پیوندها.
برچسب های HTML در داخل توضیحات مجاز نیستند و تمام نوشته ها ی بین علامت های > و < حذف خواهند شد..